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Abstract — The adjoint variable method for frequency
domain design sensitivity analysis is proposed for the
optimization of wire and printed structures analyzed by the
Method of Moments (MoM), We focus on the construction of
the adjoint system using a feasible technique which requires
only minor modifications of existing MoM codes. The
solution to the adjoint problem is obtained with very little
overhead once the original problem is solved. The gradient of
the objective function is consequently computed through a
single analysis regardless of the number of the design
parameters, The concept is illustrated through the design of a
Yagi-Uda array and a rectangular patch antenna using
suitable MoM simulators.

I. INTRODUCTION

System design sensitivity analysis (DSA) concerns the
relationship between design variables, which are assigned
by the engineer, and the system response (or state
variables), which is determined by the laws of physics
governing the system’s behavior. Its purpose is to evaluate
the sensitivity of the system’s response to variations of the
design parameters. Design sensitivity information is
crucial in a number of engineering problems such as
optimization, statistical and yield analysis, as well as
toletance analysis. In this paper, we focus on the
implementation of the adjoint-based DSA for gradient
optimization with full-wave frequency domain EM solvers.

The adjoint variable method (AVM) for DSA is an
efficient design approach to complex linear and nonlinear
problems. It has been proposed in areas such as structural
design [1], circuit theory [2]-[6], control theory, etc.
Adjoint sensitivities for circuit CAD can be found even in

undergraduate courses [7). Adjoint techniques have’

already been implemented in commercial structural design
software based on the finite-element method (FEM) [1]. At
the same time, the AVM has attracted very little attention
in full-wave EM analysis. '
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The adjoint-based DSA of microwave structures has
historically been formulated in terms of circuit concepts
through Tellegen’s theorem rather than field concepts. It is
referred to as the adjoint network method (ANM). The
first applications of the ANM to microwave circuit
problems were published in the early 1970s when network
sensitivities were calculated on both voltage-current [3]-
[5], and S-parameter bases [6], [8], [9]. Later, Alessandri
et al. [10] applied the ANM to the analysis of microwave
circuits whose subnetworks are represented by Y-
parameters. Typically, the ANM considers the sensitivity
of a single state variable [4], which makes its applications
problem specific, It is not immediately obvious how the
ANM can be utilized in a full-wave analysis.

Recently, a technique was proposed for exact sensitivity
analysis with the FEM {11]. A similar approach was later
applied to problems solved in terms of the MoM, and the
boundary layer concept was proposed to reduce the
computational load [12]. In effect, this technique is based
on the direct differentiation method (DDM) [1], an
efficient approach to the sensitivity analysis of distributed
response functions. This technique stops short of defining
and exploiting the concept of adjoint sensitivities.

We give the mathematical background of the AVM and
discuss its implementation in exact sensitivity analysis of
linear, time-harmonic EM problems. Three major issues
are discussed: (i) the adjoint problem; (ii) the procedure to
efficiently evaluate the gradient of the response function;
and (iii) the formulation of the objective function in
adjoint-based gradient optimization. The AVM approach
increases substantially the efficiency of the current CAD
tools based on full-wave frequency domain analysis such
as the FEM and the MoM. This is due to the fact that the
objective function and its gradient are computed through a
single analysis.

I1. ADJOINT-BASED DESIGN SENSITIVITY

Here, we present the basic concepts of the AVM for
DSA in the case of a general linear problem. The
importance of this discussion arises from the fact that most
full-wave solvers reduce a theoretical model of the EM
problem fo a system of linear equations through a variety
of discretization techniques. Neither the theoretical models
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nor the discretization techniques are discussed hereafter
because the formulation of the AVM assumes that the
problem has already been properly reduced to a system of
linear equations. We should note that the AVM can be
extended to the DSA of nonlinear systems. Nonlinear
circuit sensitivities and feasible approaches to their
estimation are discussed in [7],[13].

Consider the linear system of equations arising from the

discretization of an EM problem

Z{x)I=V )
Here, x is the vector of designable parameters, [ is the
state variable vector, e.g., complex currents in the MoM. V
is the global excitation vector. Z is a matrix whose
coefficients depend on the structure’s geometry and
materials. Often, the Z-coefficients are explicit functions
of the discretization grid nodes as is the case in the FEM.
This can be advantageous, since it allows the computation
of the exact sensitivities of the Z matrix instead of using

finite-differences. Note that the solution [ is an implicit

function of the design parameters x.
We define a general function f (x, I (x)), which is the

response function of the linear system. This function has to
be differentiable in all its arguments. It may have explicit
dependence on the design parameters x. It depends on the
solution T of (1), and therefore, has an implicit
dependence on x as well. The objective is to determine the
sensitivity of fwith respect to the design parameters x, i.e.,

V,f . subjectto ZI =V 2)
where V_ is defined as the row operator
& 0 5}

V,=[=— — - 3)
By ox,

Assuming that the Z matrix is not singular, the following
expression for V I is obtained from (1):

VI=2"[V V-V (ZD)] @)
where 1, ¥ and (Z7) are column vectors, e.g.,
1=[1..1,I" (5)

In V,(ZT), T, which is the solution of (1) at the current
design, is held constant during the differentiation. For
clarity, (4) is rewritten as

A _g\V %y , i=12...,n (6)
O, &, o

i L i

Equation (4) is the basis of the direct differentiation
method (DDM) [1]. It provides the means of efficient
calculation of the gradient of each of the state variables,
There is no need for additional Z matrix LU-factorization
since this has been already done at the analysis stage of the
current design. The solution of (6) can be used to calculate

the exact sensitivities of f(x,7(x)) by direct substitution

in
V. f=Vef+V, -V I Q)
where
2 0 a
V,=| — — it 8
! [azl ol 81,,,] ®

The gradient V3 f reflects the explicit dependence of
f(xT(x)) on x. The DDM, although similar to the

AVM, stops short of defining the general adjoint problem;
and, thus, does not make use of the associated
computational benefits.

The adjoint problem can be derived from (4) and (7),
which lead to

V=V V2 VY-V 2D ®)

The vector

~ T -1 .
1=[V,fz-*] =[Z27] [v./T (16)

is now introduced. It is a solution to the equation
z'i=[v,rf (11)

and is referred to as the adjeint variable vector, Equation
(11) describes the adjoins probiem. The factored Z7
matrix is obtained easily from the factored Z matrix of
the original system. The sensitivities can now be computed
ir3 terms of the original solution 7 and the adjoint solution
I as

V=V +i [V V-V (2D)] (12)

Equations (11) and (12) form the basis of the AVM. The
matrices 8Z/dx, (i=1,...,n) in V. .(ZI) may be
analytically available. If this is not the case, one can
always resort to the finite-difference approximation
aZlax; (i=1,...,m) [13]. This would require » additional
Z-matrix fills. However, the analytical evaluation of
0Z / ox, would typically be equivalent to an additional Z-
matrix fill. Thus, analytically available &2 /8y, matrices
are important not so much to the computational efficiency
of the algorithm but rather to its accuracy.

The accuracy of the sensitivity estimation via (12) is not
strongly affected if the 6Z/0x, matrices in the MoM are
approximated by finite differences. This is due to the
nearly linear dependence of the majority of the elements of
the &7 /Ox; matrix on small perturbations ax; (from 1 to
5%) of a geometrical design parameter (see also [13]).

A key to the construction of the adjoint problem is the
adjoint excitation vector in (11) ¥ =[V,f]' . It is evideit
that the response function fhas to be differentiable in 1,

(k=1,...,m). The accuracy of the adjoint solution 7
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Fig. 1. The geometry of the Yagi-Uda array.

depends strongly on the accuracy of V. Numerical tests
show that inaccurate finite-difference approximations of

V may result in deterioration of the sensitivity analysis
via (12).

The AVM has significant computational advantages in
comparison with the traditional calculation of the
sensitivities through the finite-difference approach (FDA).
The AVM generates the response and its sensitivities
through a single analysis regardless of the number of
design parameters ». Certain post-processing is required;
however, its computational requirements do not exceed
those of one system analysis. In contrast, the FDA
performs (n+1) full analyses. The AVM has better
computational efficiency in comparison with the DDM as
well. In the DDM, according to (6), n back substitutions of
the factored Z matrix are needed to compute gf /éx . In
AVM, according to (11) and (12), there is only one back
substitution needed regardless of m: the one used to
compute I.

II1. DEFINING AN OBJECTIVE FUNCTION

An objective function f may be a suitable least pth or

minimax real valued function [3),[5] of the state variables
I, (k=1,...,m). The response in the frequency domain

analysis is typically a complex valued function. The
complex error e{w;) containing sampled frequency

domain responses [3], [5] can, for example, appear in a
least pth objective function as

1
f=2—lelw)F
;P
where @, denotes the jth frequency of interest. Then,

Y =Y Refle(w) ¢ (@, Ve(w,))
J

(3)

(14)

It is recommended that f and, therefore, e(w;) be
analytically differentiable in /, (& =1,...,m), so that the
adjoint excitation ¥ is readily computed at the current
design.
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Fig. 2. The progress of the objective function and the input
impedance of the Yagi-Uda design.

IV. RESULTS
A. Input Impedance of a Yagi-Uda Array

The first example is the optimization of the input
impedance of the Yagi-Uda array, whose initial design is
shown in Fig. 1. The analysis is based on Pocklington’s
equation using pulse subdomain basis functions. The
objective function is defined as

fx)=|Z,.-2)/ 2 (1s)
where 7 =73 Q. The vector of design parameters is
x=[h, 5,1, where I, =h/A and s, =s,/A. The
result of the optimization is shown in Fig. 2. At each
iteration, only one LU-factorization of the Z-matrix is
performed. The adjoint excitation V¥ has only one nonzero
element because the objective function f(x) dependsona
single state variable: the current at the driver’s base. The
optimal design is obtained as x =[0.5243 0.2607]" .

B. Input Impedance of a Rectangular Patch Antenna

The AVM technique is applied te the optimization of a
microstrip-fed rectangular patch antenna with an inset, for
an input impedance of 50 Q. The design parameters are
the length of the patch L, its width # and the depth of the
inset S. The design problem is formulated as

£(x)=(Re{z,,} - 50) +(Im{Z,,})* (16)
where x =[L W ST . The analysis is based on the electric
field integral equation (EFIE). The discretization is based
on triangular basis functions [14]. The progress of the
design during the optimization is shown in Fig. 3. The
initial design is x=[50 90 14]" (mm). The optimal
design is x =[51.51 96.39 15.004]" (mm).
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Fig. 3. The progress of the objective function and the input
impedance of the patch antenna design.
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Fig. 4. The progress of the objective function for the gain
optimization of the Yagi-Uda array.

C. Maximum Directivity of a Yagi-Uda Array

The directivity of the Yagi-Uda antenna of Fig. 1 is
optimized by maximizing the radiation intensity in the
direction of maximum radiation (& = 90", =90")

fx)=-]4,0=90",p =907 an

where A, is the only non-zero component of the magnetic
vector potential generated by the antenna. The design
space iS X =[$3, 54, 55,17 , where the subscript » denotes
normalization with respect to the wavelength A. In this
case, the objective function depends on all currents Ji
(k =1,...,m) and the adjoint excitation V is a full column
vector. The initial design is the one optimized for
Zn=T3 Q, with x=[0.34 0.34 0.34]". The optimal
design is x =[0.3735 0.4471 0.4353)" . The gain of the
antenna at the initial design is G® =12.75 (11.06 dB).
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After the optimization is completed, G =15.08 (11.78
dB).

V. CONCLUSIONS

A feasible adjoint variable method to design sensitivity
analysis with frequency domain full wave EM solvers is
proposed. A theory and possible implementations of
adjoint-based gradient optimization of high-frequency
structures are presented. Important issues related to the
formulation of the adjoint system, the accuracy of the
sensitivity estimation and the objective functions are
discussed and illustrated through MoM analysis.
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