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Abstract - The adjoint variable method for frequency 
domain design sensitivity analysis is proposed for the 
optimization of wire and printed structures analyzed by the 
Method of Moments (MOM). We focus on the construction of 
the adjoint system using a feasible technique which requires 
only minor modifications of existing MOM codes. The 
solution to the adjoint problem is obtained with very little 
overhead once the original problem is solved. The gradient of 
the objective function is consequently computed through a 
single analysis regardless of the number of the design 
parameters. The concept is illustrated through the design of a 
Yagi-Udn array and a rectangular patch antenna using 
suitable MOM simulators. 

I. INTRODUCTION 

System design sensitivity analysis (DSA) cnncems the 
relationship behveen design variables, which are assigned 
by the engineer, and the system response (or state 
variables), which is detettnined by the laws of physics 
governing tbe system’s behavior. Its purpose is to evaluate 

the sensitivity of the system’s response to variations of the 
design parameters. Design sensitivity information is 
crucial in a number of engineering problems such as 

optimization, statistical and yield analysis, as well as 
tolerance analysis. In this paper, we focus on the 
implementation of the adjoin&based DSA for gradient 
optimization with full-wave frequency domain EM solvers. 

The adjoint variable method (AVM) for DSA is an 
efficient design approach to complex linear and nonlinear 
problems. It has been proposed in areas such as stmctnral 
design [l], circuit theory (2]-[6], control theory, etc. 
Adjoid sensitivities for circuit CAD can be found even in 
undergraduate cnnrses [7]. Adjoint techniques have 
already been implemented in commercial stmctural design 
sothvate based on the finite-element method (FEM) [I]. At 
the same time, the AVM has attracted very little attention 
in full-wave EM analysis. 

‘Ihis work was supported in pan by the Natural Sciences and 
Engineering Research Council of Canada under Grants 
OGP0227660-OO,OGPOOO7239-98, STR234854-00, through the 
Micronet Network of Centtes of Excellence and Bandler 
Corporation. 

1.W. Bmdler is also with Bandler Carporation, P.O. Bax 
8083, Dundas, Ontario, Canada L9H 5E7. 

The adjoin&based DSA of microwave sttn~tnre~ has 
historically been fottnulated in terms of circuit concepts 
through Tellegen’s theorem rather than field concepts. It is 
referred to as the adjoint network method (ANM). The 
first applications of the ANM to microwave circuit 
problems were published in the early 1970s when network 
sensitivities were calculated on both voltage-current [3]- 
[5], and S-parameter bases [6], [S], [9]. Later, Alessandti 
e-r al. [I 0] applied the ANM to the analysis of microwave 
circuits whose subnetworks are represented by Y- 
parameters. Typically, the ANM considers the sensitivity 
of a single state variable [4], which makes its applications 
problem specific. It is not immediately obvious how the 
ANM can be utilized in a full-wave analysis. 

Recently, a technique was proposed for exact sensitivity 
analysis with the FEM [ 1 I]. A similar approach was later 
applied to problems solved in terms of the MOM, and the 
boundary layer concept was proposed to reduce the 
computational load [IZ]. In effect, this technique is based 
on the direct d&mntiation method (DDM) [l], an 
efficient approach to the sensitivity analysis of distributed 
response functions. This technique stops short of defining 
and exploiting the concept of adjoint senstttvtttes. 

We give the mathematical background of the AVM and 
discuss its implementation in exact sensitivity analysis of 
linear, time-harmonic EM problems. Three major issues 
are discussed: (i) the adjoint problem; (ii) the procedure to 
efficiently evaluate the gradient of the response fnnction; 
and (iii) the formulation of the objective function in 
adjoint-based gradient optimization. The AVM approach 
increases substantially the efficiency of the current CAD 
tools based on full-wave frequency domain analysis such 
as the FEM and the MOM. This is due to the fact that the 
objective fnnction and its gradient are computed through a 
single analysis. 

II. ADJOMT-BASED DESIGN SENSITIVITY 

Here, we present the basic concepts of the AVM for 
DSA in the case of a general linear problem. The 
importance of this discussion arises horn the fact that most 
full-wave solvers reduce a theoretical model of the EM 
problem to a system of linear equations through a variety 
of discretization techniques. Neither the theoretical models 

971 

0-7803.7239.5/02,$10.00 B 2002 IEEE 2002 IEEE MTTS Digest 



nor the discretization techniques are discussed hereafter 
because the formulation of tbe AVM assumes that the 
problem has already been properly reduced to a system of 
linear equations. We should note that tbe AVM can be 
extended to the DSA of nonlinear systems. Nonlinear 
circuit sensmvmes and feasible approaches to their 
estimation are discussed in [7],[13]. 

Consider the linear system of equations arising from the 
discretization of an EM problem 

Z(x)l = v (1) 
Here, x is tbe vector of designable parameters, I is the 
state variable vector, e.g., complex currents in the MoM. V 
is the global excitation vector. Z is a matrix whose 
coefficients depend on the structure’s geometry and 
materials. O&n, the Z-co&cients are explicit functions 
of the discretization grid nodes as is the case in the FEM. 
This can be advantageous, since it allows the computation 
of the exact sensltw~ta of the Z matrix instead of using 
finite-differences. Note that the solution I is an implicit 
function ofthe design parameters x. 

We define a general function f(x,r(x)), which is the 

responsefunction ofthe linear system. This function has to 
be differentiable in all its arguments. It may have explicit 
dependence on the design parameters x. It depends on the 
solution T of (l), and therefore, has an implicit 
dependence onx as well. The objective is to determine the 
sensitivity offwith respect to the design pammetersx, i.e., 

VJ, subject to ZI = V 

where V, is defined as the row operator 
(2) 

Assuming that the Z matrix is not singular, the following 
expression for V,I is obtained from (1): 

V,I =z-‘[v,v-V,(Zi)] (4) 

where I, Vand (Zl) are column vectors, e.g., 

I=[I~-l,]’ (5) 
In V,(Zi) , T, which is the solution of (1) at the current 
design, is held constant during the differentiation. For 
clarity, (4) is rewritten as 

+I E-az- [ 1 --I , i=1,2 ,..., n 
4 ax, 

(6) 

Equation (4) is the basis of the direct differentiation 
method (DDM) [l]. It provides the means of efficient 
calculation of the gradient of each of the state variables. 
There is no need for additional Z matrix LU-factorization 
since this has been already done at the analysis stage of the 
current design. The solution of (6) can be used to calculate 

the exact sensitivities of f(x,?(x)) by direct substitution 

in 

where 

v,f=v~f+v,f~v,I (7) 

v I = 
[ 
a d a 
ar, ar, arm 1 (8) 

The gradient V:f reflects the explicit dependence of 

+,?(x)) on x. The DDM, although similar to the 

AVM, stops short of defining the general adjoint problem; 
and, thus, does not make use of the associated 
computational benefits. 

The adjoint problem can be derived from (4) and (7), 
which lead to 

vxf=v:f+v,fz-‘[v,v-V,(Zi)] (9) 

The v‘xtor 

k[V,fZ-ly =[Z’].I[V,fr 

is now introduced. It is a solution to the equation 

(10) 

z’i = [V,fl’ (11) 
and is referred to as the adjoint variable vector. Equation 
(11) describes the a&int problem. The factored ZT 
matrix is obtained easily from the factored Z matrix of 
the original system. The sensitivities can now be computed 
in terms of the original solution i and the adjoint solution 
ias 

v,f=v:f +P[v,v-v,(zi)] (12) 
Equations (I I) and (12) form the basis of the AVM. The 
matrices aZl&, (i=l,...,n) in V,(Zi) may be 
analytically available. If this is not the case, one can 
always resort to the finite-difference approximation 
nllnx, (+l,... ,n) 1131. This would require n additional 
Z-matrix fills. However, the analytical evaluation of 
aZ/&, would typically be equivalent to an additional Z- 
matrix till. Thus, analytically available aZ/&, matrices 
are important not so much to the computational efficiency 
ofthe algorithm but rather to its accuracy. 

The accuracy of the sensitivity estimation via (12) is not 
strongly affected if the aZ / &z matrices in the MOM are 
approximated by finite differences. This is due to the 
nearly linear dependence of the majority of the elements of 
the aZl&, matrix on small perturbations LX, (from I to 
5%) of a geometrical design parameter (see also [13]). 

A key to the construction of the adjoint problem is the 
adjoint exit&ion vector in (I 1) e = [V,fF It is evidait 

that the response function f has to be differentiable in II 

(k=l,...,m). The accuracy of the adjoint solution i 
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Fig. I. The geometry of the Yagi-Uda array. 

depends strongly on the accuracy of P. Numerical tests 
show, that inaccurate finitedifference approximations of 
p may result in deterioration of the sensitivity analysis 
via (12). 

The AVM has significant computational advantages in 
comparison with the traditional calculation of the 
sensitivities through the finite-difference approach (FDA). 
The AVM generates the response and its sensitivities 
through a single analysis regardless of the number of 
design parameters n. Certain post-processing is required; 
however, its computational requirements do not exceed 
those of one system analysis. In contrast, the FDA 
performs (~1) full analyses. The AVM has better 
computational efftciency in comparison with the DDM as 
well. In the DDM, according to (6), n back substitutions of 
the factored Z matrix are needed to compute aflzbr In 
AVM, according to (11) and (12), there is only one back 
substitutiqn needed regardless of n: the one used to 
compute I 

An objective functionfmay be a suitable least pth or 
minima real valued function [3],[5] of the state variables 
4 (k = l,...,m). The response in the frequency domain 
analysis is typically a complex valued function. The 
complex error e(w,) containing sampled frequency 

domain responses [3], [5] can, for example, appear in a 
least pth objective function as 

(13) 

where co, denotes the jth frequency of interest. Then, 

VJ=CRe{le(o,)l’-* e’(w,)Ve(w,)} (14) 
I 

It is recommended that f and, therefore, e(o,) be 
analytically differentiable in Ik (k = l,...,m ), so that the 
adjoint excitation P is readily computed at the current 
design. 

Fig. 2. The progress of the objective function and the input 
impedance of the Yagi-Uda design. 

IV. RESULTS 

A. Input Impedance of a Yagi-Uda Array 

The first example is the optimization of the input 
impedance of the Yagi-Uda array, whose initial design is 
shown in Fig. 1. The analysis is based on Pocklington’s 
equation using pulse subdomain basis functions. The 
objective function is defined as 

- - 
f(x) = I(Z,” -wzl (15) 

where 2=73 Q. The vector of design parameters is 

x=R. anr, where I,, = l, /d and ~ln = ~1” 11 The 
result of the optimization is shown in Fig. 2. At each 
iteration, only one L&factorization of the Z-matrix is 
performed. The adjoint excitation fi has only one nonzero 
element because the objective function f(x) depends on a 
single state variable: the current at the driver’s base. The 
optimal design is obtained as x = [OS243 0.26071” 

B. Input Impedance of a Rectangular Patch Antenna 

The AVM technique is applied to the optimization of a 
microstrip-fed rectangular patch antenna with an inset, for 
an input impedance of 50 Q, The design parameters are 
the length of the patch L, its width Wand the depth of the 
inset S. The design problem is formulated as 

f(x)=(Re(Z,,l-50~+(Im(Z,,l)2 (16) 
where x = [L W S]r The analysis is based on the electric 
field integral equation (EFIE). The discretization is based 
on triangular basis timctions [14]. The progress of the 
design during the optimization is shown in Fig. 3. The 
initial design is x=[SO 90 14]“ (mm). The optimal 
design is x=[51.51 96.39 15.004r (mm). 
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Fig. 3. The progress of the objective function and the input 
impedance of the patch antenna design. 

Fig. 4. The pmgress of the objective timction for the gain 
optimization of the Yagi-Uda array. 

C. Maximum Directivity of a Yagi-Uda Away 

The directivity of the Yagi-Uda antenna of Fig. 1 is 
optimized by maximizing the radiation intensity in the 
direction of maximum radiation (0 = 9o”,p, = 90”) 

f(x)=-IAz(B=90’,9,=90’)j2 (17) 

where A, is the only non-zero component of the magnetic 
vector potential generated by the antenna. The design 
space is x = [So. s4, ss,lr, where the subscript n denotes 
normalization with respect to the wavelength a, In this 
case, the objective function depends o? all currents I, 
(k = 1,. , m) and the adjoint excitation V is a full column 
vector. The initial design is the one optimized for 
Z,” =73 R, with x=[O.34 0.34 0.34r. The optimal 
design is x=[O.3735 0.4471 0.43531’. The gain of the 
antenna at the initial design is G@) = 12.75 (11.06 dB). 

After the optimization is completed, Gc9) = 15.08 (11.78 
dB). 

V. CONCLUSIONS 

A feasible adjoint variable method to design sensitivity 
analysis with frequency domain full wave EM solvers is 
proposed. A theory and possible implementations of 
&joint-based gradient optimization of high-frequency 
struch~~es are presented. Important issues related to the 
formulation of the adjoint system, the accuracy of the 
sensitivity estimation and the objective functions are 
discussed and illustrated through MOM analysis. 
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